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Oscillations of a Bose-Einstein condensate rotating in a harmonic plus quartic trap
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We study the normal modes of a two-dimensional rotating Bose-Einstein condensate confined in
a quadratic plus quartic trap. Hydrodynamic theory and sum rules are used to derive analytical
predictions for the collective frequencies in the limit of high angular velocities, Ω, where the vortex
lattice produced by the rotation exhibits an annular structure. We predict a class of excitations with
frequency

√
6Ω in the rotating frame, irrespective of the mode multipolarity m, as well as a class

of low energy modes with frequency proportional to |m|/Ω. The predictions are in good agreement
with results of numerical simulations based on the 2D Gross-Pitaevskii equation. The same analysis
is also carried out at even higher angular velocities, where the system enters the giant vortex regime.

PACS numbers: 03.75.Kk, 03.75.Lm, 67.40.Vs, 32.80.Lg

The availability of traps with stronger than harmonic
confinement opens up new scenarios in rotating ultra-
cold gases. In principle such traps permit the realiza-
tion of configurations rotating with arbitrarily high an-
gular velocities, since the confining potential is always
stronger than the repulsive centrifugal term. The first
experiments in this direction are reported in Ref. [1].

The stationary configurations of rotating Bose-
Einstein condensates in the presence of a harmonic plus
quartic trap have already been the subject of several the-
oretical papers [2, 3]. These calculations predict novel
vortex structures reflecting the interplay between the
centrifugal and confining forces. In particular, if the an-
gular velocity, Ω, exceeds a critical value, the centrifugal
force overcomes the harmonic confinement giving rise to
a hole in the center of the condensate. For large angu-
lar velocities the radius of the resulting annulus increases
linearly with Ω, while the width of the annulus decreases
like 1/Ω. For such geometries the dynamical behavior
of the gas exhibits new features, whose investigation is
the main purpose of this work. In particular, along with
excitations involving radial deformations of the density,
one expects the occurrence of low frequency sound waves
propagating around the annulus.

In this work we will calculate the frequencies of the low-
est modes by developing an analytical description using
hydrodynamic theory and sum rules, as well as carrying
out simulations based upon the numerical solution of the
Gross-Pitaevskii equation. For simplicity we will restrict
our discussion to 2D configurations, valid for fast rotating
condensates strongly confined in the axial direction.

The expression for the trapping potential is given by
the sum of quadratic and quartic components

Vext =
~ω⊥

2

(

r2

d2
⊥

+ λ
r4

d4
⊥

)

. (1)

Here ω⊥ is the harmonic oscillator frequency, d⊥ =

√

~/Mω⊥ is the characteristic harmonic oscillator length

where M is the atomic mass, r =
√

x2 + y2 is the two-
dimensional radial coordinate and λ is the dimension-
less parameter characterizing the strength of the quartic
term. In the following, we use dimensionless harmonic
oscillator units, where ω⊥ and d⊥ are the units of fre-
quency and length respectively.

When the angular velocity Ω is sufficiently high, a lat-
tice of quantized vortices is formed. If λ > 0, then for Ω
exceeding a critical value, Ωh > 1, the equilibrium con-
figuration in the rotating frame corresponds to a vortex
lattice with a hole in the center [2, 3]. At even larger an-
gular velocities the system is expected to undergo a tran-
sition to a giant vortex where all the vorticity is confined
to the center of the annular condensate. In the follow-
ing we will mainly restrict the discussion to the former
regime which is more accessible experimentally, although
we briefly discuss the giant vortex at the end.

For a vortex lattice the dynamics can be described by
introducing the concept of diffused vorticity within a hy-
drodynamic picture. This approach has already success-
fully described the dynamics of rotating configurations
in harmonic traps [4]. Such an approximation is valid
provided that the Thomas-Fermi condition ξ ≪ d is sat-
isfied, where ξ is the healing length and d is the width
of the annulus [3]. In addition, the healing length should
be small compared to the distance l = 1/

√
Ω between

vortices, ξ ≪ l.
In the rotating frame the linearized rotational hydro-

dynamic equations take the form

∂

∂t
δn + ∇ · (n0 δv) = 0 , (2)

∂

∂t
δv + g ∇ δn + 2Ω ∧ δv = 0 , (3)

where n0 is the equilibrium density, g is the coupling con-
stant, and δn and δv are the density and velocity varia-
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tions respectively. For an effectively 2D system, uniform
in the axial direction over a length Z, the coupling con-
stant can be written as g = 4πNa/Z where N is the
number of particles and a is the 3D s-wave scattering
length. The integrated density is normalized to unity.

For Ω > Ωh the equilibrium density in the presence of
the potential (1) is given by [3]

n0 =
λ

2g
(R2

2 − r2)(r2 − R2
1) , (4)

where R1,2 are the inner and the outer radius of the an-
nulus, respectively. The mean square radius is hence
〈r2〉 =

∫

r2n0 dr = (R2
1 + R2

2)/2. It is useful to in-
troduce the variable ζ = (r2 − R2

+/2)/(R2
−/2), where

R2
± = R2

2 ± R2
1. Hence ζ varies from −1 to 1 and is zero

at the mean square radius of the cloud. We also recall
that R2

+ = (Ω2 − 1)/λ and R2
− = (Ω2

h − 1)/λ, where the
angular velocity for the formation of the hole, related to
the healing length ξ, is given by Ωh = (1 + 2

√
λ/ξ)1/2 =

√

1 + (12λ2g/π)1/3 [3]. For large angular velocities, R2
+

increases quadratically with Ω while R2
− (proportional to

the area) remains constant. Hence the radius of the an-
nulus R+/

√
2 increases linearly with Ω whereas the width

of the annulus, d = R2 − R1, decreases like 1/Ω.
The hydrodynamic equations (2) and (3) can be solved

by expressing the radial and azimuthal components of the
velocity field δv in terms of δn, and looking for solutions
of the form δn = δn(ζ)eimφe−iωt, where m is the az-
imuthal quantum number, φ is the azimuthal angle and
ω is the excitation frequency in the rotating frame. For
Ω > Ωh, the equation for the density becomes

ω

[

ω2 − 4Ω2 − m2λR4
−(1 − ζ2)

4(R2
+ + R2

−ζ)

]

δn + 2mΩλR2
−ζδn+

+ωλ
∂

∂ζ

[

(

R2
+ + R2

−ζ
)

(1 − ζ2)
∂

∂ζ
δn

]

= 0 . (5)

Eq. (5) can be significantly simplified in the large angular
velocity limit Ω2 ≫ 1 where R2

+ ∼ Ω2/λ, by neglecting
the terms of order of R2

−/R2
+ ∝ 1/Ω2. This case leads to

a class of solutions with ω ∝ Ω, obeying the equation

(ω2 − 4Ω2)δn + Ω2 ∂

∂ζ

[

(1 − ζ2)
∂

∂ζ
δn

]

= 0 , (6)

and having the form of Legendre polynomials Pj(ζ), with
j = 1, 2, . . . [5]. The corresponding eigenfrequencies are

ω2 = [4 + j(j + 1)]Ω2 , (7)

yielding, for the most relevant j = 1 mode, the prediction
ω =

√
6Ω. Remarkably, result (7) is independent of both

the oscillator frequency ω⊥ and the strength λ of the
quartic potential. Furthermore, it is independent of the
value and the sign of m. The linear dependence of ω on
Ω can be simply understood using the macroscopic result

ω = cq for the sound wave dispersion. The sound velocity
is given by the dilute gas expression Mc2 = gn with gn ∝
λR4

− independent of Ω while q ∝ 1/d ∝ (R2
−/R+)−1.

Recalling that R2
+ ∼ Ω2/λ one immediately finds ω ∝ Ω.

Result (7) has been derived in the large Ω limit. Solu-
tions of Eq. (5) holding for all Ω > Ωh can be found for
λ → 0, where Ωh ∼ 1 and the terms in R2

−/R2
+ ∝ λ2/3

are negligible. For the j = 1 mode we find the result
ω2 = 6Ω2 − 2. When Ω < 1 the solutions for λ → 0 tend
to those obtained in Ref. [4] by solving the problem with
a rotating harmonic potential.

The collective oscillations can also be investigated us-
ing a more microscopic approach based on sum rules. Let
us introduce the p-energy weighted moments

mp(F ) =
∑

n

|〈n|F |0〉|2Ep
n0 , (8)

relative to a generic excitation operator F =
∑N

k=1 f(r)k,
where En0 is the energy difference between the excited
state |n〉 and the ground state |0〉.

A useful estimate of the frequency of the monopole
compression mode (M), excited by the operator f(r) =
r2, can be obtained using the ratio between the en-
ergy weighted (m1) and inverse energy weighted (m−1)
moments. The former can be expressed in terms of
commutators as m1(F ) = 〈[F, [H, F ]]〉/2 = 2N〈r2〉,
where H = Hkin + Hext + Hint − ΩLz is the many-
body Hamiltonian in the rotating frame with interac-
tion term Hint = g

∑

i<j δ(ri − rj). In contrast, the
inverse energy weighted moment can be calculated in
terms of the monopole static polarizability to be m−1 =
−(N/M)∂〈r2〉/∂ω2

⊥ (in dimensional units), where the
derivative should be calculated at constant angular mo-
mentum. In the Thomas-Fermi approximation one finds

ω2 =
m1(M)

m−1(M)
= 6λR2

+ + 4 . (9)

For Ω < Ωh, R+ is the Thomas-Fermi radius, which can
be found by solving the cubic equation R4

+(4λR2
+−3Ω2+

3) = 12g/π. For Ω > Ωh, since R2
+ = (R2

1 + R2
2) =

(Ω2 − 1)/λ, one finds the simple result ω =
√

6Ω2 − 2,
which is consistent with the hydrodynamic prediction for
Ω ≫ Ωh [6].

The result of estimate (9), as a function of Ω, is re-
ported in Fig. 1. We compare to the numerical results ob-
tained by solving the 2D time dependent Gross-Pitaevskii
equation, where the numerical methods are detailed in
Ref. [3]. Starting from the stationary solution, the mode
is excited by a sudden change in the confining r2 poten-
tial, which, after some short time, is reset to its original
form. The subsequent changes in the radius are then
analyzed to extract the frequencies of oscillation. We
have performed simulations at g = 1000 for λ = 0.5 and
λ = 10−3. The latter value of λ is similar to that used in
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FIG. 1: Frequency of the lowest m = 0 mode as a function of
the angular velocity Ω (in units of the trap frequency) for g =
1000. The sum rule estimates (9) for λ = 0.5 and λ = 10−3

are plotted as solid black and dotted lines respectively, while
the results of solving the GP equation numerically are plotted
as solid and open circles. The gray line is the asymptotic
prediction ω =

√
6Ω and the dashed lines represent the critical

frequencies for hole formation, Ωh, for both values of λ.

the experiments of Ref. [1], where the numerical solution
of the linearized hydrodynamic equations for the lowest
monopole oscillation at Ω < Ωh is also presented. Fig. 1
shows that the sum rule approach provides an excellent
estimate of the monopole frequency. Fig. 1 also reveals
a cusp in the mode frequency at Ω = Ωh. This behavior
results from the use of the Thomas-Fermi approximation
for R2

+ in Eq. (9) and is smoothed out by quantum effects
included in the full GP solution.

Sum rules can also be applied to excitations of the
form f = r|m|eimφ, which carry multipolarities different
from zero. We consider the moments m+

1 (F ) = m1(F ) +
m1(F

†) and m+
3 (F ) = m3(F ) + m3(F

†). These can be
easily expressed in terms of commutators as m+

1 (F ) =
〈[F †, [H, F ]]〉 and m+

3 (F ) = 〈[[F †, H ], [H, [H, F ]]]〉. From
the previous expressions for the dipole (m = 1) and
quadrupole (m = 2) operators D and Q, and using the
Thomas-Fermi approximation [7] for Ω ≥ Ωh one pre-
dicts the following results for the ratio between the cubic
and energy weighted sum rules

m+
3 (D)

m+
1 (D)

= 5Ω2 − 1 , (10)

m+
3 (Q)

m+
1 (Q)

= 5Ω2 − 1 +
3

5

λ2R4
−

Ω2 − 1
. (11)

In the large Ω limit Eqs. (10) and (11) both yield
√

5Ω
for the excitation frequency, which does not coincide with
the prediction of Eq. (7). This result, which is inconsis-
tent with a one-mode assumption, reveals the existence
of additional modes not described by Eq. (6). Indeed, as-

suming that m+
3 is exhausted by the j = 1 modes, the fact

that the ratio m+
3 /m+

1 is smaller than the corresponding
frequency

√
6Ω implies that m+

1 includes contributions
from lower frequency modes. In particular one concludes
that the latter account for 1/6 of the total m+

1 moment.
The Ω dependence of these lowest frequency modes can

be simply inferred from Eq. (5) where, neglecting higher
order corrections, one finds that the frequency should
be proportional to |m|λR2

−/Ω. These modes can be in-
terpreted as describing a sound wave directed along the
azimuthal direction, in contrast to the high-lying modes
which correspond to a radial shape oscillation of the an-
nulus. The coefficient of proportionality can be estimated
from the ratio between the energy and inverse energy
weighted sum rules. The low-lying modes contribute only
1/6 of the m+

1 moment; the m+
−1 sum rule, which is ex-

pected to be exhausted by the low lying modes, is given
by the static response χ. In the large Ω limit, the lin-
earized hydrodynamic equations with a multipole pertur-
bation give m+

−1 = −χ = (Nπ/g)R2
−(Ω2/2λ)|m|. Since

m+
1 ∼ 2Nm2(Ω2/2λ)|m|−1 in the same limit, we find the

frequency ω = (m+
1 /6m+

−1)
1/2 = (

√
2/6)|m|λR2

−/Ω. The
same result can also be derived using a variational anal-
ysis of Eq. (5). It is also worth noticing that ω ∝ λ2/3

tends to zero in the λ → 0 limit.
Fig. 2 shows a comparison between the analytical and

numerical results for the high-lying and low-lying dipole
and quadrupole modes. One sees good agreement be-
tween the two datasets at high Ω, validating the sum
rule approach used here. In the numerical simulations,
the high-lying modes depart from the

√
6Ω dependence

for Ω < Ωh. The behavior at small Ω is qualitatively
similar to the one exhibited in a rotating harmonic trap,
where only one mode per branch is present. In particu-
lar for λ ≪ 1 and Ω < 1 the equations of rotational hy-
drodynamics in the rotating frame give the result [4, 8]
ω(m = ±2) =

√
2 − Ω2 ∓ Ω for the two quadrupole fre-

quencies, while for the dipole one has ω(m = ±1) = 1∓Ω.
At large Ω, the numerical results also show that the low-
lying quadrupole mode frequency is larger than that of
the dipole mode by a factor of two, in agreement with
the arguments presented above.

The excitation energies in the laboratory frame are re-
lated to those in the rotating frame by Elab = Erot +mΩ.
For a proper identification of the modes in the lab frame,
it is crucial to consider the sign of the azimuthal quantum
number m associated with each excitation. For this pur-
pose it is useful to evaluate the strengths σ+ = |〈n|F |0〉|2
and σ− = |〈n|F †|0〉|2, relative to the operators F and F †

exciting states with angular momentum ±m. A careful
analysis of the response function reveals that the upper
quadrupole level corresponds to an m = −2 mode, the
m = +2 strength relative to this level being extremely
small. A different situation takes place for the low-lying
level. When Ω < 1 this level has mainly an m = +2 char-
acter, as in the case of Ref. [4]. For Ω > Ωh, instead, both
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FIG. 2: Numerical results for the high-lying (circles) and low-
lying (squares) |m| = 1 (open) and |m| = 2 (closed) mode
frequencies as a function of the angular velocity Ω (in units
of the trap frequency), for g = 1000 and λ = 0.5. These are
compared to the analytical results, where solid lines show the
sum rule estimates for the low-lying modes while the gray line
is the asymptotic prediction ωH =

√
6Ω expected to hold at

large Ω. The vertical dashed line denotes the value of Ωh.

the m = ±2 strengths significantly differ from zero. For
example, at Ω = 5 and for the parameters of Fig. 2, the
numerical simulation shows that σ+

H ≃ 0, σ−
H = 12.0N ,

σ+
L = 19.9N , σ−

L = 7.8N , where σ±
H,L are the strengths

associated with the high and low-lying m = ±2 modes.
In conclusion, we predict that in the lab frame for Ω > Ωh

one should observe two m = −2 modes with frequencies
ωH − 2Ω and |ωL − 2Ω|, and one m = +2 mode with fre-
quency ωL + 2Ω, where ωH,L are the high and low-lying
frequencies in the rotating frame [9]. We also notice that
at high angular velocity the m = −2 mode with frequency
|ωL−2Ω| is energetically unstable in the lab frame. Sim-
ilar results are found for the dipole modes.

We finally discuss the case of the giant vortex equi-
librium configuration, where the velocity field of the con-
densate is irrotational. In this case, linearizing the Gross-
Pitaevskii equation in the rotating frame gives two cou-
pled equations for the density and the phase variations
δn and δS

∂

∂t
δn +

(virr

r
− Ω

) ∂δn

∂φ
+ ∇ · (n0 ∇δS) = 0 , (12)

∂

∂t
δS +

(virr

r
− Ω

) ∂δS

∂φ
+ gδn = 0 , (13)

where virr = ν/r for a giant vortex with circulation ν [3].
From these equations one can derive an equation similar
to Eq. (5), but for the phase rather than the density. For
large Ω, the solutions are again Legendre polynomials,
but with eigenfrequencies ω2 = 3j(j + 1)Ω2 where j ≥ 1.
Hence the j = 1 mode has the same frequency for both
the irrotational and solid body cases, but the frequencies

for the j > 1 modes are different. In the case of the
low-lying modes for m 6= 0, using the sum rule or hydro-
dynamic methods discussed earlier, we find a frequency
that has the same 1/Ω dependence as in the vortex lattice
case, but is larger by a factor 31/6.

In summary, we have studied normal modes of a Bose
condensate in a harmonic plus quartic potential using an-
alytic methods (hydrodynamic equations and sum rule)
and numerical solution of the Gross-Pitaevskii equation.
At large angular velocities Ω we find a radial mode with
a frequency

√
6Ω independent of the mode multipolarity

and value of λ, as well as low-lying modes corresponding
to waves around the annular condensate.
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